Pure Python Decision Trees


By now we all know what Random Forests is. We know about the great off-the-self performance, ease of tuning and parallelization, as well as it’s importance measures. It’s easy for engineers implementing RF to forget about it’s underpinnings. Unlike some of it’s more modern and advanced contemporaries, descision trees are easy to interpret. A neural net might obtain great results but it is difficult to work backwards from and explain to stake holders as the weights of the connections between two neurons have little meaning on their own. Decision trees won’t be a great choice for a feature space with complex relationships between numerical variables, but it’s great for data with a simplier mix of numerical and categorical.

I recently dusted off one of my favorite books, Programming Collective Intelligence by Toby Segaran (2007), and was quickly reminded how much I loved all the pure python explanations of optimization and modeling. It was never enough for me to read about and work out proofs on paper, I had to implement something abstract in code to truly learn it.

I went through some of the problems sets and to my dismay, realized that the code examples were no longer hosted on his personal site. A quick google search revealed that multiple kind souls had not only shared their old copies on github, but even corrected mistakes and updated python methods.

I’ll be using some of this code as inpiration for an intro to decision trees with python.

PyCon Montreal 2015 and Motivation


I just got back from a fun week in Montreal for PyCon 2015. Due to my work commitments since relocating to Seattle and leaving the San Diego Data Science Meetup I organized behind, I’ve been concerned that I was losing touch with the data science and general Python community. I figured an international conference would force me to get out of town, plus I love combining conference trips with a vacation. My last international conference was useR! 2013 in Spain

The Montréal-Python group hosted a meetup http://montrealpython.org/en/2015/03/mp53/ the night after the conference ended where Olivier Grisel spoke about what’s new in scikit-learn 0.16 http://scikit-learn.org/stable/whats_new.html. Scikit-learn is my favorite package across any language, and the talk reminded me that I haven’t done anything meaningful with it in about a year. Combine this fact with the Computational Photography graduate class I’ve been plugging away at this Spring (mostly OpenCV), and I now know it’s time to write about image work with scikit-learn.

The 35-hour Workweek with Python


I was prompted to write this post after reading the NYT’s In France, New Review of 35-Hour Workweek. For those not familiar with the 35-hour workweek, France adopted it in February 2000 with the suppport of then Prime Minister Lionel Jospin and the Minister of Labour Martine Aubry. Simply stated, the goal was to increase quality of life by reducing the work hour per worker ratio by requiring corporations to hire more workers to maintain the same work output as before. This in theory would also reduce the historic 10% unemployment rate.

I mostly write about ML, but I’ve been meaning to write about Pandas’ latest features and tight integration with SciPy such as data imputation and statistical modeling, and the actual working hours of EU countries will serve as fun source of data for my examples. I found data on the annual average hours worked per EU country from 1998 to 2013 on The Economic Observation and Research Center for the Development of the Economy and Enterprise Development website that have the best hosting from these Web Hosting Reviews – Best Web Hosts 2017. This notebook won’t serve as in-depth research on the efficacy of this policy, but more of a tutorial on data exploration, although a follow-up post exploring the interactions of commonly tracked economic factors and externalities of the policy might be fun.

In this IPython notebook we’ll work through generating descriptive statistics on our hours worked dataset then work through the process of interpolation to and extrapolation as defined below:

Interpolation is an estimation of a value within two known values in a sequence of values. For this data this might mean replacing missing average hour values in given date positions between the min and max observations.

Extrapolation is an estimation of a value based on extending a known sequence of values or facts beyond the area that is certainly known. Extrapolation is subject to greater uncertainty and a higher risk of producing meaningless data. For this data where the max observed date is 2013, we might want to extrapolate what the data points might be out to 2015.